

    
      Navigation

      
        	
          index

        	dynet stable documentation 
 
      

    


    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dynet/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dynet/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	dynet stable documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  _static/plus.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/up-pressed.png





_static/file.png





_static/comment-bright.png





_static/down-pressed.png





_static/ajax-loader.gif





python/CHANGES.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
pydynet API changes for v2



		Model no longer holds named parameters


		checkpoint / revert mechanism for computation graph (useful for beam search etc)






Model no longer holds named parameters


The major API change in v2 of pydynet is in the Model class.
This change breaks backward compatibility, but is easy to adapt to.


The Model class no longer holds named parameters. This is done in order
to be more compatible to the C++ API, as well as to simplify the design of
the Model class. If a string-to-parameter mapping is desired, it can be achieved
externally to the model class.


Old API:


m = Model()
m.add_parameters("w",(100,100))
m.add_lookup_parameters("lp",(100,100))

p_w = m["w"]
lp  = m["lp"]






New API:


m = Model()
p_w = m.add_parameters((100,100))
lp = m.add_lookup_parameters((100,100))

# OR
params = {}
params["w"] = m.add_parameters((100,100))
params["lp"] = m.add_lookup_parameters((100,100))

p_w = params["w"]
lp  = params["lp"]









New model-saving mechanism


There are now two model-saving mechaisms, “old” and “new”, both work.



The old mechanism


In the “old” mechanism (which still works) the user can load and save models using
a single call, provided that they added (either directly and indirectly) the exact same parameters
to the model prior to calling save and load.
For example:



# saving:
from pydynet import *
m = Model()
W = m.add_parameters((100,100))
lb = LSTMBuilder(1, 100, 100, m) # this also adds parameters to the model
b = m.add_parameters((30))
m.save("filename")

# loading
m = Model()
W = m.add_parameters((100,100))
lb = LSTMBuilder(1, 100, 100, m) 
b = m.add_parameters((30))
m.load("filename")






Notice how the exact same parameters (same sizes and order) were added before calling “load”.
This may be either a blessing or a curse.







The new mechanism


In the new mechanism, the user instead tells the model, at save time, which are the components it is
interested in saving. They then need to specify the same components, in the same order, at load time.
Notice however that there is no need to specify the sizes etc, as this is handled by the save/load mechanism:


# saving:
from pydynet import *
m = Model()
W = m.add_parameters((100,100))
lb = LSTMBuilder(1, 100, 100, m) # this also adds parameters to the model
b = m.add_parameters((30))
m.save("filename", [W,b,lb])

# loading
m = Model()
(W, b, lb) = m.load("filename")






Some may view this form of loading to be much more convenient.


In order to make use of “the new way”, the items that are being passed in the list must adhere to at least one of the following:



		be of type Parameters or LookupParameters (the return types of add_parameters or add_lookup_parameters).


		be of a built-in “complex” builders such as LSTMBuilder or GRUBuilder that add parameters to the model.


		user defied classes that extend to the new pydynet.Saveable class and implement the required interface.





The Saveable class is used for easy creation of user-defined “sub networks” that can be saved and loaded as part of the model saving mechanism.


class OneLayerMLP(Saveable):
    def __init__(self, model, num_input, num_hidde, num_out, act=tanh):
        self.W1 = model.add_parameters("W1", (num_hidden, num_input))
        self.W2 = model.add_parameters("W2", (num_out, num_hidden))
        self.b1 = model.add_parameters("b1", (num_hidden))
        self.b2 = model.add_parameters("b2", (num_out))
        self.act = act
        self.shape = (num_input, num_out)

    def __call__(self, input_exp):
        W1 = parameter(self.W1)
        W2 = parameter(self.W2)
        b1 = parameter(self.b1)
        b2 = parameter(self.b2)
        g = self.act
        return softmax(W2*g(W1*input_exp + b1)+b2)

    # the Saveable interface requires the implementation
    # of the two following methods, specifying all the 
    # Parameters / LookupParameters / LSTMBuilder / Saveables / etc 
    # that are directly created by this Saveable.
    def get_components(self):
        return (self.W1, self.W2, self.b1, self.b2)
            
    def restore_components(self, components):
        self.W1, self.W2, self.b1, self.b2 = components






And for the usage:



m = Model()
# create an embedding table.
E = m.add_lookup_parameters((1000,10))
# create an MLP from 10 to 4 with a hidden layer of 20.
mlp = OneLayerMLP(m, 10, 20, 4, rectify)

# use them together.
output = mlp(E[3])

# now save the model:
m.save("filename",[mlp, E])

# now load:
m2 = Model()
mlp2, E2 = m.load("filename")

output2 = mlp2(E2[3])

assert(numpy.array_equal(output2.npvalue(), output.npvalue()))









Checkpoint / revert mechanism for computation graph


When doing beam search, we often do multiple calculations and then discard most of them.
If the calculations are done with the compuation graph, the computation graph can grow very
large (and hence become slow and memory consuming) as the expressions resulting from the discarded
computation are not discarded from the graph.


The new checkpointing mechanism deals with this problem by allowing to mark certain points in the graph lifestage, and then returning back to them (deleting everything that was created after the checkpoint).


The API is using cg_checkpoint() to mark a checkpoint, and cg_revert() to return to the last checkpoint.
The checkpoints are treated as a stack, so you can create several checkpoints and then return to them
in reverse order.


Be careful with this feature, as expressions that were created after the checkpoint will be invaludated after the revert, but this is not enforced in code so accessing them may work, but result in wrong computations.


Example usage:



m = Model();
px = m.add_parameters((10,10))
x = parameter(px)
y = x*x
cg_checkpoint()
z = y+y
w = z+y
print w.npvalue()
cg_revert()
# at this point x and y are still alive, but z and w are deleted,
# they are not part of the computation graph anymore and the c-level memory
# for them is freed.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





_static/down.png





search.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

rnnlm/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
Obtaining LM data


./install-examples.sh






This downloads the data used in this tutorial.





Training example


Train an LSTM LM using a class-factor softmax:


./rnnlm/lm -x -s -t ../rnnlm/ptb-mikolov/train.txt -d ../rnnlm/ptb-mikolov/valid.txt \
     -c ../rnnlm/ptb-mikolov/clusters-mkcls.txt -D 0.3 -H 256 --eta_decay_onset_epoch 10 --eta_decay_rate 0.5






Train an LSTM LM with a standard softmax:


./rnnlm/lm -x -s -t ../rnnlm/ptb-mikolov/train.txt -d ../rnnlm/ptb-mikolov/valid.txt \
     -D 0.3 -H 256 --eta_decay_onset_epoch 10 --eta_decay_rate 0.5









Evaluation example


Evaluate a trained model:


./rnnlm/lm -t ../rnnlm/ptb-mikolov/train.txt -c ../rnnlm/ptb-mikolov/clusters-mkcls.txt \
     -m lm_0.3_2_128_256-pid7865.params -H 256 -p ../rnnlm/ptb-mikolov/test.txt









PTB Baselines


| Model | dev | test |
| —– | —:| —-:|
| 5-gram KN | 188.0 | 178.9 |
| 2x128, dropout=0.3, class-factored softmax | 164.4 | 157.7 |
| 2x256, dropout=0.3, CFSM, decay 0.5@>10 | 129.7 | 125.4 |






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
DyNet


Dynamic neural network library


DyNet (formerly known as cnn [http://github.com/clab/cnn-v1]) is a neural network library that is written in C++ with bindings in Python. It is designed to be efficient when run on either CPU or GPU, and works well with networks that have dynamic structures that change for every training instance. Read the instructions below to get started, and feel free to contact the dynet-users group [https://groups.google.com/forum/#!forum/dynet-users] group or github page [http://github.com/clab/dynet] with any questions, issues, or contributions.



Building


(for how to use the python bindings, perform the following build process, then see PYINSTALL.md)



Prerequisites


DyNet relies on a number of external libraries including Boost, cmake, Eigen, and mercurial (to install Eigen).
Boost, cmake, and mercurial can be installed from standard repositories, for example on Ubuntu linux:


sudo apt-get install libboost-all-dev cmake mercurial






To compile DyNet you also need the development version of the Eigen library [https://bitbucket.org/eigen/eigen]. If you use any of the released versions, you may get assertion failures or compile errors. If you don’t have Eigen installed already, you can get it easily using the following command:


hg clone https://bitbucket.org/eigen/eigen/









Building


To get and build DyNet, clone the repository


git clone https://github.com/clab/dynet.git






then enter the directory and use cmake [http://www.cmake.org/] to generate the makefiles


cd dynet
mkdir build
cd build
cmake .. -DEIGEN3_INCLUDE_DIR=/path/to/eigen






Then compile, where “2” can be replaced by the number of cores on your machine


make -j 2






To see that things have built properly, you can run


./examples/xor






which will train a multilayer perceptron to predict the xor function.





Compiling/linking External Programs


When you want to use DyNet in an external program, you will need to add the dynet
directory to the compile path:


-I/path/to/dynet






and link with the dynet library:


-L/path/to/dynet/build/dynet -ldynet









Debugging build problems


If you have a build problem and want to debug, please run


make clean
make VERBOSE=1 &> make.log






then examine the commands in the make.log file to see if anything looks fishy. If
you would like help, send this make.log file via the “Issues” tab on github, or to
the dynet-users mailing list.





Build options



GPU (CUDA) support


dynet supports running programs on GPUs with CUDA. If you have CUDA installed, you
can build DyNet with GPU support by adding -DBACKEND=cuda to your cmake options.
This will result in three libraries named “libdynet,” “libgdynet,” and “libdynetcuda” being
created. When you want to run a program on CPU, you can link to the “libdynet” library as
shown above. When you want to run a program on GPU, you can link to the “libgdynet” and
“libdynetcuda” libraries.


-L/path/to/dynet/build/dynet -lgdynet -ldynetcuda






(Eventually you will be able to use a single library to run on either CPU or GPU, but this is
not fully implemented yet.)





Non-standard Boost location


dynet supports boost, and will find it if it is in the standard location. If boost is
in a non-standard location, say $HOME/boost, you can specify the location by adding
the following to your cmake options:


-DBOOST_ROOT:PATHNAME=$HOME/boost -DBoost_LIBRARY_DIRS:FILEPATH=$HOME/boost/lib
-DBoost_NO_BOOST_CMAKE=TRUE -DBoost_NO_SYSTEM_PATHS=TRUE






Note that you will also have to set your LD_LIBRARY_PATH to point to the boost/lib
directory.





Building for Windows


DYNET has been tested to build in Windows using Microsoft Visual Studio 2015. You may be able to build with MSVC 2013 by slightly modifying the instructions below.


First, install Eigen following the above instructions.


Second, install Boost [http://www.boost.org/] for your compiler and platform. Follow the instructions for compiling Boost or just download the already-compiled binaries.


To generate the MSVC solution and project files, run cmake [http://www.cmake.org], pointing it to the location you installed Eigen and Boost (for example, at c:\libs\Eigen and c:\libs\boost_1_61_0):


mkdir build
cd build
cmake .. -DEIGEN3_INCLUDE_DIR=c:\libs\Eigen -DBOOST_ROOT=c:\libs\boost_1_61_0 -DBOOST_LIBRARYDIR=c:\libs\boost_1_61_0\lib64-msvc-14.0 -DBoost_NO_BOOST_CMAKE=ON -G"Visual Studio 14 2015 Win64"






This will generate dynet.sln and a bunch of *.vcxproj files (one for the DYNET library, and one per example). You should be able to just open dynet.sln and build all. Note: multi-process functionality is currently not supported in Windows, so you will not be able to build rnnlm-mp. Go to build->Configuration Manager and uncheck the box next to this project









Command line options


All programs using DyNet have a few command line options. These must be specified at the
very beginning of the command line, before other options.



		--dynet-mem NUMBER: DyNet runs by default with 512MB of memory each for the forward and
backward steps, as well as parameter storage. You will often want to increase this amount.
By setting NUMBER here, DyNet will allocate more memory. Note that you can also individually
set the amount of memory for forward calculation, backward calculation, and parameters
by using comma separated variables --dynet-mem FOR,BACK,PARAM. This is useful if, for
example, you are performing testing and don’t need to allocate any memory for backward
calculation.


		--dynet-l2 NUMBER: Specifies the level of l2 regularization to use (default 1e-6).


		--dynet-gpus NUMBER: Specify how many GPUs you want to use, if DyNet is compiled with CUDA.
Currently, only one GPU is supported.


		--dynet-gpu-ids X,Y,Z: Specify the GPUs that you want to use by device ID. Currently only
one GPU is supported, but if you use this command you can select which one to use.








Creating your own models


An illustration of how models are trained (for a simple logistic regression model) is below:


// *** First, we set up the structure of the model
// Create a model, and an SGD trainer to update its parameters.
Model mod;
SimpleSGDTrainer sgd(&mod);
// Create a "computation graph," which will define the flow of information.
ComputationGraph cg;
// Initialize a 1x3 parameter vector, and add the parameters to be part of the
// computation graph.
Expression W = parameter(cg, mod.add_parameters({1, 3}));
// Create variables defining the input and output of the regression, and load them
// into the computation graph. Note that we don't need to set concrete values yet.
vector<dynet::real> x_values(3);
Expression x = input(cg, {3}, &x_values);
dynet::real y_value;
Expression y = input(cg, &y_value);
// Next, set up the structure to multiply the input by the weight vector,  then run
// the output of this through a logistic sigmoid function (logistic regression).
Expression y_pred = logistic(W*x);
// Finally, we create a function to calculate the loss. The model will be optimized
// to minimize the value of the final function in the computation graph.
Expression l = binary_log_loss(y_pred, y);
// We are now done setting up the graph, and we can print out its structure:
cg.print_graphviz();

// *** Now, we perform a parameter update for a single example.
// Set the input/output to the values specified by the training data:
x_values = {0.5, 0.3, 0.7};
y_value = 1.0;
// "forward" propagates values forward through the computation graph, and returns
// the loss.
dynet::real loss = as_scalar(cg.forward(l));
// "backward" performs back-propagation, and accumulates the gradients of the
// parameters within the "Model" data structure.
cg.backward(l);
// "sgd.update" updates parameters of the model that was passed to its constructor.
// Here 1.0 is the scaling factor that allows us to control the size of the update.
sgd.update(1.0);






Note that this very simple example that doesn’t cover things like memory initialization, reading/writing models, recurrent/LSTM networks, or adding biases to functions. The best way to get an idea of how to use DyNet for real is to look in the example directory, particularly starting with the simplest xor example.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

external/easyloggingpp/samples/Qt/shared-lib/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
   A very simple sample demonstrating an app and shared-lib usage that both uses
 easylogging++ as their logging library.

 @rev    1.0
 @since  v9.01
 @author mkhan3189








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

PYINSTALL.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
Installing the Python DyNet module.


(for instructions on installing on a computer with GPU, see below)


Python bindings to DyNet are currently only supported under python 2.


First, get DYNET:


cd $HOME
mkdir dynet
git clone https://github.com/clab/dynet.git
cd dynet
git submodule init # To be consistent with DyNet's installation instructions.
git submodule update # To be consistent with DyNet's installation instructions.






Then get Eigen:


cd $HOME
cd dynet
hg clone https://bitbucket.org/eigen/eigen/






We also need to make sure the cython module is installed.
(you can replace pip with your favorite package manager, such as conda, or install within a virtual environment)


pip install cython






To simplify the following steps, we can set a bash variable to hold where we have saved the main directories of DyNet and Eigen. In case you have gotten DyNet and Eigen differently from the instructions above and saved them in different location(s), these variables will be helpful:


PATH_TO_DYNET=$HOME/dynet/dynet/
PATH_TO_EIGEN=$HOME/dynet/eigen/






Compile DyNet.
(modify the code below to point to the correct boost location. Note the addition of the -DPYTHON flag.)


cd $PATH_TO_DYNET
PATH_TO_PYTHON=`which python`
mkdir build
cd build
cmake .. -DEIGEN3_INCLUDE_DIR=$PATH_TO_EIGEN -DBOOST_ROOT=$HOME/.local/boost_1_58_0 -DBoost_NO_BOOST_CMAKE=ON -DPYTHON=$PATH_TO_PYTHON
make -j 2






Assuming that the cmake command found all the needed libraries and didn’t fail, the make command will take a while, and compile dynet as well as the python bindings.


You now have a working python binding inside of build/dynet.
To verify this is working:


cd $PATH_TO_DYNET/build/dynet
python






then, within python:


import dynet as pc
print pc.__version__
model = pc.Model()






In order to install the module so that it is accessible from everywhere, run the following:


cd $PATH_TO_DYNET/build/dynet
python setup.py install --user






(the --user switch will install the module in your local site-packages, and works without root privilages.
To install the module to the system site-packages (for all users), run python setup.py install without this switch)


You should now have a working python binding (the dynet module).


Note however that the installation relies on the compiled dynet library being in $PATH_TO_DYNET/build/dynet,
so make sure not to move it from there.


Now, check that everything works:


# check that it works:
cd $PATH_TO_DYNET
cd pyexamples
python xor.py
python rnnlm.py rnnlm.py






Alternatively, if the following script works for you, then your installation is likely to be working:


from dynet import *
model = Model()







Installing with GPU support





Currently unsupported. The GPU support instructions need some revisions.


For installing on a computer with GPU, first install CUDA.
Here, we assume CUDA is installed in /usr/local/cuda-7.5


There are two modules, dynet which is the regular CPU module, and gdynet which is the GPU
module. You can import either of them, these are two independent modules. The GPU support
is incomplete: some operations (i.e. hubber_distance) are not available for the GPU.


First step is to build the DyNet modules.
Checkout and go to the build directory (same instructions as above). Then:


To build a CPU version on a computer with CUDA:


cmake .. -DEIGEN3_INCLUDE_DIR=../eigen -DBACKEND=eigen
make -j 4






To build a GPU version on a computer with CUDA:


cmake .. -DBACKEND=cuda -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-7.5/
make -j 4






Now, build the python modules (as above, we assume cython is installed):


The GPU module (gdynet):


cd ../dynet
make gdynet.so
make ginstall






The CPU module (dynet):


cd ../dynet
make dynet.so
make install






Add the following to your env:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PATH_TO_DYNET/dynet


Once both the dynet and gdynet are installed, run python ../pyexamples/cpu_vs_gpu.py for a small timing example.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

external/easyloggingpp/samples/Qt/file-splitter-joiner/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
File splitter/joiner sample


About


This is multi-threaded application that uses threads in order to split/merge part/s. The idea is not to show how to use threading in Qt, in fact, I might have done it wrong (this document [http://qt-project.org/wiki/Threads_Events_QObjects] can be helpful to make thread-use better), the idea behind this sample is to show you a possible usage of Easylogging++ is fairly large scale i.e, multiple files project using multi-threading.


Usage


Once you successfully compile the project using minimum of Qt 4.6.2, you can use this in two ways;



		Using command-line


Split: ./file-splitter-joiner split [source_file] [total_parts] [destination_dir]


Join:  ./file-splitter-joiner join [destination_file] [parts...]





		Using GUI


 When you don't provide enough parameters, a GUI based program will be launched












Screen Shots


[image: Splitter] [http://easylogging.org/images/screenshots/splitter.png]


[image: Joiner] [http://easylogging.org/images/screenshots/joiner.png]






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

tests/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  Use test-dynet.cc as a reference for how to set up subsequent tests.




          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

external/easyloggingpp/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  [image: banner]


                                   ‫بسم الله الرَّحْمَنِ الرَّحِيمِ







Manual For v9.80


[image: Build Status] [https://travis-ci.org/easylogging/easyloggingpp]







Quick Links


![download] Latest Release [https://github.com/easylogging/easyloggingpp/releases/latest]


![notes] Release Notes [https://github.com/easylogging/easyloggingpp/tree/master/doc/RELEASE-NOTES-v9.80]


![samples] Samples [https://github.com/easylogging/easyloggingpp/tree/v9.80/samples]


![paypal] [http://muflihun.com/donation/]







Table of Contents


Introduction
    Why yet another library
    Features at a glance
    Future
Getting Started
    Download
    Quick Start
    Setting Application Arguments
Configuration
    Level
    Configure
        Using Configuration File
        Using el::Configurations Class
        Using In line Configurations
    Default Configurations
    Global Configurations
    Logging Format Specifiers
    Date/Time Format Specifiers
    Logging Flags
    Application Arguments
    Configuration Macros
    Reading Configurations
Logging
    Basic
    Conditional Logging
    Occasional Logging
    printf Like Logging
    Verbose Logging
        Basic
        Conditional and Occasional
        Verbose Level
        Check If Verbose Logging Is On
        VModule
    STL Logging
        Supported Templates
    Registering New Loggers
    Unregister Loggers
    Populating Existing Logger IDs
    Sharing Logging Repository
Extra Features
    Performance Tracking
        Make Use of Performance Tracking Data
    Log File Rolling
    Crash Handling
        Installing Custom Crash Handlers
    Stacktrace
    Multi-threading
    CHECK Macros
    Logging perror()
    Using Syslog
    Qt Logging
    Boost Logging
    wxWidgets Logging
    Extending Library
        Logging Your Own Class
        Logging Third-party Class
    Manually Flushing and Rolling Log Files
    Log Dispatch Callback
    Asynchronous Logging
Contribution
    Submitting Patches
    Reporting a Bug
    Donation
Compatibility
Licence
Disclaimer





Introduction


Easylogging++ is single header only, feature-rich, efficient logging library for C++ applications. It has been written keeping three things in mind; performance, management (setup, configure, logging, simplicity) and portability. Its highly configurable and extremely useful for small to large sized projects.
This manual is for Easylogging++ v9.80. For other versions please refer to corresponding release [https://github.com/easylogging/easyloggingpp/releases] on github.


![top] Goto Top



Why yet another library


If you are working on a small utility or large project in C++, this library can be handy. Its based on single header and does not require linking or installation. You can import into your project as if its part of your project. This library has been designed with various thoughts in mind (i.e, portibility, performance, usability, features and easy to setup).


Why yet another library? Well, answer is pretty straight forward, use it as if you wrote it so you can fix issues (if any) as you go or raise them on github. In addition to that, I have not seen any logging library based on single-header with such a design where you can configure on the go and get the same performance. I have seen other single-header logging libraries for C++ but either they use external libraries, e.g, boost, Qt to support certain features like threading, regular expression or date etc. This library has everything built-in to prevent usage of external libraries, not that I don’t like those libraries, in fact I love them, but because not all projects use these libraries, I couldn’t take risk of depending on them.


![top] Goto Top





Features at a glance


Easylogging++ is feature-rich containing many features that both typical and advanced developer will require while writing a software;



		Highly configurable


		Extremely fast


		Thread and type safe


		Cross-platform


		Custom log patterns


		Conditional and occasional logging


		Performance tracking


		Verbose logging


		Crash handling


		Helper CHECK macros


		STL logging


		Third-party library logging (Qt, boost, wxWidgets etc)


		Extensible (Logging your own class or third-party class)


		And many more...





![top] Goto Top





Future


We see Easylogging++ with bright future. Plans are to write wrappers of this library to use in other types of C++ based projects, e.g, QML Logging [https://github.com/easylogging/qmllogging] etc. Since we are low on resources, it may take some time, but it will certainly be available and would be worked on in regular fasion.


![top] Goto Top







Getting Started



Download


Download latest version from Latest Release [https://github.com/easylogging/easyloggingpp/releases/latest]


For other releases, please visit releases page [https://github.com/easylogging/easyloggingpp/releases]. If you application does not support C++11, please consider using v8.91 [https://github.com/easylogging/easyloggingpp/tree/v8.91]. This is stable version for C++98 and C++03, just lack some features.


![top] Goto Top





Quick Start


In order to get started with Easylogging++, you can follow three easy steps;



		Download latest version


		Include into your project


		Initialize using single macro... and off you go!





#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP

int main(int argv, char* argc[]) {
   LOG(INFO) << "My first info log using default logger";
   return 0;
}






That simple! Please note that INITIALIZE_EASYLOGGINGPP should be used once and once-only otherwise you will end up getting compilation errors. This is definiting several extern variables. This means it can be defined only once per application. Best place to put this initialization statement is in file where int main(int, char**) function is defined, right after last include statement.


![top] Goto Top





Setting Application Arguments


It is always recommended to pass application arguments to Easylogging++. Some features of Easylogging++ require you to set application arguments, e.g, verbose logging to set verbose level or vmodules (explained later). In order to do that you can use helper macro or helper class;


int main(int argv, char* argc[]) {
   START_EASYLOGGINGPP(argc, argv);
   ...
}






![top] Goto Top







Configuration



Level


In order to start configuring your logging library, you must understand severity levels. Easylogging++ deliberately does not use hierarchical logging in order to fully control what’s enabled and what’s not. That being said, there is still option to use hierarchical logging using LoggingFlag::HierarchicalLogging. Easylogging++ has following levels (ordered for hierarchical levels)


|   Level  |                 Description                                                                                                                                   |
|———-|—————————————————————————————————————————————————————|
| Global   | Generic level that represents all levels. Useful when setting global configuration for all levels.                                                            |
| Trace    | Information that can be useful to back-trace certain events - mostly useful than debug logs.                                                                  |
| Debug    | Informational events most useful for developers to debug application. Only applicable if NDEBUG is not defined (for non-VC++) or _DEBUG is defined (for VC++).|
| Fatal    | Very severe error event that will presumably lead the application to abort.                                                                                   |
| Error    | Error information but will continue application to keep running.                                                                                              |
| Warning  | Information representing errors in application but application will keep running.                                                                             |
| Info     | Mainly useful to represent current progress of application.                                                                                                   |
| Verbose  | Information that can be highly useful and vary with verbose logging level. Verbose logging is not applicable to hierarchical logging.                         |
| Unknown  | Only applicable to hierarchical logging and is used to turn off logging completely.                                                                           |


![top] Goto Top





Configure


Easylogging++ is easy to configure. There are three possible ways to do so,



		Using configuration file


		Using el::Configurations class


		Using inline configuration






Using Configuration File


Configuration can be done by file that is loaded at runtime by Configurations class. This file has following format;


* LEVEL:
  CONFIGURATION NAME  = "VALUE" ## Comment
  ANOTHER CONFIG NAME = "VALUE"






Level name starts with a star (*) and ends with colon (:). It is highly recommended to start your configuration file with Global level so that any configuration not specified in the file will automatically use configuration from Global. For example, if you set Filename in Global and you want all the levels to use same filename, do not set it explicitly for each level, library will use configuration value from Global automatically.
Following table contains configurations supported by configuration file.


|   Configuration Name  |   Type   |                 Description                                                                                                                                                 |
|———————–|———-|—————————————————————————————————————————————————————————–|
| Enabled               |   bool   | Determines whether or not corresponding level for logger is enabled. You may disable all logs by using el::Level::Global                                                |
| To_File               |   bool   | Whether or not to write corresponding log to log file                                                                                                                     |
| To_Standard_Output    |   bool   | Whether or not to write logs to standard output e.g, terminal or command prompt                                                                                           |
| Format                |   char*  | Determines format/pattern of logging for corresponding level and logger.                                                                                                  |
| Filename              |   char*  | Determines log file (full path) to write logs to for corresponding level and logger                                                                                       |
| Milliseconds_Width    |   uint   | Specifies milliseconds width. Width can be within range (1-6)                                                                                                             |
| Performance_Tracking  |   bool   | Determines whether or not performance tracking is enabled. This does not depend on logger or level. Performance tracking always uses ‘performance’ logger unless specified|
| Max_Log_File_Size     |   size_t | If log file size of corresponding level is >= specified size, log file will be truncated.                                                                                 |
| Log_Flush_Threshold   |  size_t  | Specifies number of log entries to hold until we flush pending log data                                                                                                   |


Please do not use double-quotes anywhere in comment, you might end up in unexpected behaviour.


Sample Configuration File


* GLOBAL:
   FORMAT               =  "%datetime %msg"
   FILENAME             =  "/tmp/logs/my.log"
   ENABLED              =  true
   TO_FILE              =  true
   TO_STANDARD_OUTPUT   =  true
   MILLISECONDS_WIDTH   =  6
   PERFORMANCE_TRACKING =  true
   MAX_LOG_FILE_SIZE    =  2097152 ## 2MB - Comment starts with two hashes (##)
   LOG_FLUSH_THRESHOLD  =  100 ## Flush after every 100 logs
* DEBUG:
   FORMAT               = "%datetime{%d/%M} %func %msg"







Explanation


Configuration file contents in above sample is straightforward. We start with GLOBAL level in order to override all the levels. Any explicitly defined subsequent level will override configuration from GLOBAL. For example, all the levels except for DEBUG have the same format, i.e, datetime and log message. For DEBUG level, we have only date (with day and month), source function and log message. The rest of configurations for DEBUG are used from GLOBAL. Also, notice {%d/%M} in DEBUG format above, if you do not specify date format, default format is used. Default values of date/time is %d/%M/%Y %h:%m:%s,%g For more information on these format specifiers, please refer to Date/Time Format Specifier section below





Usage


#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP

int main(int argc, const char** argv) {
    // Load configuration from file
    el::Configurations conf("/path/to/my-conf.conf");
    // Reconfigure single logger
    el::Loggers::reconfigureLogger("default", conf);
    // Actually reconfigure all loggers instead
    el::Loggers::reconfigureAllLoggers(conf);
    // Now all the loggers will use configuration from file
}







Your configuration file can be converted to el::Configurations object (using constructor) that can be used where ever it is needed (like in above example).



![top] Goto Top







Using el::Configurations Class


You can set configurations or reset configurations;


#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP

int main(int argc, const char** argv) {
   el::Configurations defaultConf;
   defaultConf.setToDefault();
    // Values are always std::string
   defaultConf.set(el::Level::Info, 
            el::ConfigurationType::Format, "%datetime %level %msg");
    // default logger uses default configurations
    el::Loggers::reconfigureLogger("default", defaultConf);
    LOG(INFO) << "Log using default file";
    // To set GLOBAL configurations you may use
   defaultConf.setGlobally(
            el::ConfigurationType::Format, "%date %msg");
   el::Loggers::reconfigureLogger("default", defaultConf);
    return 0;
}







Configuration just needs to be set once. If you are happy with default configuration, you may use it as well.



![top] Goto Top





Using In line Configurations


Inline configuration means you can set configurations in std::string but make sure you add all the new line characters etc. This is not recommended because it’s always messy.


el::Configurations c;
c.setToDefault();
c.parseFromText("*GLOBAL:\n FORMAT = %level %msg");







Above code only sets Configurations object, you still need to re-configure logger/s using this configurations.



![top] Goto Top







Default Configurations


If you wish to have a configuration for existing and future loggers, you can use el::Loggers::setDefaultConfigurations(el::Configurations& configurations, bool configureExistingLoggers = false). This is useful when you are working on fairly large scale, or using a third-party library that is already using Easylogging++. Any newly created logger will use default configurations. If you wish to configure existing loggers as well, you can set second argument to true (it defaults to false).


![top] Goto Top





Global Configurations


Level::Global is nothing to do with global configurations, it is concept where you can register configurations for all/or some loggers and even register new loggers using configuration file. Syntax of configuration file is:


-- LOGGER ID ## Case sensitive
  ## Everything else is same as configuration file


-- ANOTHER LOGGER ID
  ## Configuration for this logger






Logger ID starts with two dashes. Once you have written your global configuration file you can configure your all loggers (and register new ones) using single function;


int main(void) {
   // Registers new and configures it or
   // configures existing logger - everything in global.conf
   el::Loggers::configureFromGlobal("global.conf");
   // .. Your prog
   return 0;
}






Please note, it is not possible to register new logger using global configuration without defining its configuration. You must define at least single configuration. Other ways to register loggers are discussed in Logging section below.


![top] Goto Top





Logging Format Specifiers


You can customize format of logging using following specifiers:


|     Specifier   |                 Replaced By                                                                 |
|—————–|———————————————————————————————|
| %logger       | Logger ID                                                                                   |
| %thread       | Thread ID - Uses std::thread if available, otherwise GetCurrentThreadId() on windows        |
| %level        | Severity level (Info, Debug, Error, Warning, Fatal, Verbose, Trace)                         |
| %levshort     | Severity level (Short version i.e, I for Info and respectively D, E, W, F, V, T)            |
| %vlevel       | Verbosity level (Applicable to verbose logging)                                             |
| %datetime     | Date and/or time - Pattern is customizable - see Date/Time Format Specifiers below          |
| %user         | User currently running application                                                          |
| %host         | Computer name application is running on                                                     |
| %file         | File name of source file (Full path)                                                        |
| %fbase        | File name of source file (Only base name)                                                   |
| %line         | Source line number                                                                          |
| %func         | Logging function                                                                            |
| %loc          | Source filename and line number of logging (separated by colon)                             |
| %msg          | Actual log message                                                                          |
| %             | Escape character (e.g, %%level will write %level)                                           |


You can also specify your own format specifiers. In order to do that you can use el::Helpers::installCustomFormatSpecifier. A perfect example is %ip_addr for TCP server application;


const char* getIp(void) {
    return "192.168.1.1";
}

int main(void) {
    el::Helpers::installCustomFormatSpecifier(el::CustomFormatSpecifier("%ip_addr", getIp));
    el::Loggers::reconfigureAllLoggers(el::ConfigurationType::Format, "%datetime %level %ip_addr : %msg");
    LOG(INFO) << "This is request from client";
    return 0;
}






![top] Goto Top





Date/Time Format Specifiers


You can customize date/time format using following specifiers


|    Specifier    |                 Replaced By                                                                                      |
|—————–|——————————————————————————————————————|
| %d            | Day of month (zero-padded)                                                                                       |
| %a            | Day of the week - short (Mon, Tue, Wed, Thu, Fri, Sat, Sun)                                                      |
| %A            | Day of the week - long (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)                          |
| %M            | Month (zero-padded)                                                                                              |
| %b            | Month - short (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)                                       |
| %B            | Month - Long (January, February, March, April, May, June, July, August, September, October, November, December)  |
| %y            | Year - Two digit (13, 14 etc)                                                                                    |
| %Y            | Year - Four digit (2013, 2014 etc)                                                                               |
| %h            | Hour (12-hour format)                                                                                            |
| %H            | Hour (24-hour format)                                                                                            |
| %m            | Minute (zero-padded)                                                                                             |
| %s            | Second (zero-padded)                                                                                             |
| %g            | Milliseconds (width is configured by ConfigurationType::MillisecondsWidth)                                       |
| %F            | AM/PM designation                                                                                                |
| %             | Escape character                                                                                                 |


Please note, date/time is limited to 30 characters at most.


![top] Goto Top


###Logging Flags
Form some parts of logging you can set logging flags; here are flags supported:


|     Flag                                               |                 Description                                                                                                                   |
|——————————————————–|———————————————————————————————————————————————–|
| NewLineForContainer (1)                              | Makes sure we have new line for each container log entry                                                                                      |
| AllowVerboseIfModuleNotSpecified (2)                 | Makes sure if -vmodule is used and does not specifies a module, then verbose logging is allowed via that module. Say param was -vmodule=main=3 and a verbose log is being written from a file called something.cpp then if this flag is enabled, log will be written otherwise it will be disallowed. Note: having this defeats purpose of -vmodule                                 |
| LogDetailedCrashReason (4)                           | When handling crashes by default, detailed crash reason will be logged as well (Disabled by default) (issue #90 [https://github.com/easylogging/easyloggingpp/issues/90])                                                                                                                                                                                |
| DisableApplicationAbortOnFatalLog (8)                | Allows to disable application abortion when logged using FATAL level. Note that this does not apply to default crash handlers as application should be aborted after crash signal is handled. (Not added by default) (issue #119 [https://github.com/easylogging/easyloggingpp/issues/119])                                                                                                                                                                               |
| ImmediateFlush (16)                                  | Flushes log with every log-entry (performance sensative) - Disabled by default                                                                |
| StrictLogFileSizeCheck (32)                          | Makes sure log file size is checked with every log                                                                                            |
| ColoredTerminalOutput (64)                           | Terminal output will be colorful if supported by terminal.                                                                                            |
| MultiLoggerSupport (128)                             | Enables support for using multiple loggers to log single message. (E.g, CLOG(INFO, "default", "network") << This will be logged using default and network loggers;) |
| DisablePerformanceTrackingCheckpointComparison (256) | Disables checkpoint comparison |
| DisableVModules (512)                               | Disables usage of vmodules
| DisableVModulesExtensions (1024)                     | Disables vmodules extension. This means if you have a vmodule -vmodule=main=4 it will cover everything starting with main, where as if you do not have this defined you will be covered for any file starting with main and ending with one of the following extensions; .h .c .cpp .cc .cxx .-inl-.h .hxx .hpp. Please note following vmodule is not correct -vmodule=main.=4 with this macro not defined because this will check for main..c, notice double dots. If you want this to be valid, have a look at logging flag above: AllowVerboseIfModuleNotSpecified ‘?’ and ‘’ wildcards are supported |
| HierarchicalLogging (2048)                          | Enables hierarchical logging. This is not applicable to verbose logging.|
| CreateLoggerAutomatically (4096)                          | Creates logger automatically when not available. |
| AutoSpacing (8192)                          | Automatically adds spaces. E.g, LOG(INFO) << "DODGE" << "THIS!"; will output “DODGE THIS!“|
| FixedTimeFormat (16384)                          | Applicable to performace tracking only - this prevents formatting time. E.g, 1001 ms will be logged as is, instead of formatting it as 1.01 sec|


You can set/unset these flags by using static el::Loggers::addFlag and el::Loggers::removeFlag. You can check to see if certain flag is available by using el::Loggers::hasFlag, all these functions take strongly-typed enum el::LoggingFlag



You can set these flags by using --logging-flags command line arg. You need to enable this functionality by defining macro ELPP_LOGGING_FLAGS_FROM_ARG (You will need to make sure to use START_EASYLOGGINGPP(argc, argv) to configure arguments).



![top] Goto Top





Application Arguments


Following table will explain all command line arguments that you may use to define certain behaviour; You will need to initialize application arguments by using START_EASYLOGGINGPP(argc, argv) in your main(int, char**) function.


|        Argument            |                                      Description                                        |
|—————————-|—————————————————————————————–|
| -v                       | Activates maximum verbosity                                                             |
| --v=2                    | Activates verbosity upto verbose level 2 (valid range: 0-9)                             |
| --verbose                | Activates maximum verbosity                                                             |
| -vmodule=MODULE_NAME     | Activates verbosity for files starting with main to level 1, the rest of the files depend on logging flag AllowVerboseIfModuleNotSpecified Please see Logging Flags section above. Two modules can be separated by comma. Please note vmodules are last in order of precedence of checking arguments for verbose logging, e.g, if we have -v in application arguments before vmodules, vmodules will be ignored.                                                                                                               |
| --logging-flags=3        | Sets logging flag. In example i.e, 3, it sets logging flag to NewLineForContainer and AllowVerboseIfModuleNotSpecified. See logging flags section above for further details and values. See macros section to disable this function.                                                                   |
| --default-log-file=FILE  |Sets default log file for existing and future loggers. You may want to consider defining ELPP_NO_DEFAULT_LOG_FILE to prevent creation of default empty log file during pre-processing. See macros section to disable this function.                                                                           |


![top] Goto Top





Configuration Macros


Some of logging options can be set by macros, this is a thoughtful decision, for example if we have ELPP_THREAD_SAFE defined, all the thread-safe functionalities are enabled otherwise disabled (making sure over-head of thread-safety goes with it). To make it easy to remember and prevent possible conflicts, all the macros start with ELPP_


|   Macro Name                             |                 Description                                                                                                                        |
|——————————————|—————————————————————————————————————————————————-|
| ELPP_DEBUG_ASSERT_FAILURE             | Aborts application on first assertion failure. This assertion is due to invalid input e.g, invalid configuration file etc.                         |
| ELPP_UNICODE                          | Enables Unicode support when logging. Requires START_EASYLOGGINGPP                 |
| ELPP_THREAD_SAFE                      | Enables thread-safety - make sure -lpthread linking for linux.                                                                                     |
| ELPP_FORCE_USE_STD_THREAD             | Forces to use C++ standard library for threading (Only useful when using ELPP_THREAD_SAFE            |
| ELPP_STACKTRACE_ON_CRASH              | Applicable to GCC only. Enables stacktrace on application crash                                                                                    |
| ELPP_DISABLE_DEFAULT_CRASH_HANDLING   | Disables default crash handling. You can use el::Helpers::setCrashHandler to use your own handler.                                                 |
| ELPP_DISABLE_LOGS                     | Disables all logs - (preprocessing)                                                                                                                |
| ELPP_DISABLE_DEBUG_LOGS               | Disables debug logs - (preprocessing)                                                                                                              |
| ELPP_DISABLE_INFO_LOGS                | Disables info logs - (preprocessing)                                                                                                               |
| ELPP_DISABLE_WARNING_LOGS             | Disables warning logs - (preprocessing)                                                                                                            |
| ELPP_DISABLE_ERROR_LOGS               | Disables error logs - (preprocessing)                                                                                                              |
| ELPP_DISABLE_FATAL_LOGS               | Disables fatal logs - (preprocessing)                                                                                                              |
| ELPP_DISABLE_VERBOSE_LOGS             | Disables verbose logs - (preprocessing)                                                                                                            |
| ELPP_DISABLE_TRACE_LOGS               | Disables trace logs - (preprocessing)                                                                                                              |
| ELPP_FORCE_ENV_VAR_FROM_BASH          | If environment variable could not be found, force using alternative bash command to find value, e.g, whoami for username. (DO NOT USE THIS MACRO WITH LD_PRELOAD FOR LIBRARIES THAT ARE ALREADY USING Easylogging++ OR YOU WILL END UP IN STACK OVERFLOW FOR PROCESSES (popen) (see issue #87 [https://github.com/easylogging/easyloggingpp/issues/87] for details))                                                                                                                                                                                       |
| ELPP_DEFAULT_LOG_FILE                 | Full filename where you want initial files to be created. You need to embed value of this macro with quotes, e.g, -DELPP_DEFAULT_LOG_FILE='"logs/el.gtest.log"' Note the double quotes inside single quotes, double quotes are the values for const char* and single quotes specifies value of macro                                                                                 |
| ELPP_NO_DEFAULT_LOG_FILE              | If you dont want to initialize library with default log file, define this macro. But be sure to configure your logger with propery log filename or you will end up getting heaps of errors when trying to log to file (and TO_FILE is configured to true)                                                                                                              |
| ELPP_DEBUG_ERRORS                    | If you wish to find out internal errors raised by Easylogging++ that can be because of configuration or something else, you can enable them by defining this macro. You will get your errors on standard output i.e, terminal or command prompt.                                                                                                                                             |
| ELPP_DISABLE_CUSTOM_FORMAT_SPECIFIERS | Forcefully disables custom format specifiers                                                                                                       |
| ELPP_DISABLE_LOGGING_FLAGS_FROM_ARG   | Forcefully disables ability to set logging flags using command-line arguments                                                                      |
| ELPP_DISABLE_LOG_FILE_FROM_ARG        | Forcefully disables ability to set default log file from command-line arguments                                                                    |
| ELPP_WINSOCK2        | On windows system force to use winsock2.h instead of winsock.h when WIN32_LEAN_AND_MEAN is defined                                                                    |
![top] Goto Top





Reading Configurations


If you wish to read configurations of certain logger, you can do so by using typedConfigurations() function in Logger class.


el::Logger* l = el::Loggers::getLogger("default");
bool enabled = l->typedConfigurations()->enabled(el::Level::Info);
// Or to read log format/pattern
std::string format = 
        l->typedConfigurations()->logFormat(el::Level::Info).format();






![top] Goto Top







Logging


Logging in easylogging++ is done using collection of macros. This is to make it easier for user and to prevent them knowing about unnecessary greater details of how things are done. If you further wish to know how things are done, refer to section “Design” below.



Basic


You are provided with two basic macros that you can use in order to write logs:



		LOG(LEVEL)


		CLOG(LEVEL, logger ID)





LOG uses ‘default’ logger while in CLOG (Custom LOG) you specify the logger ID. For LEVELs please refer to Configurations - Levels section above. Different loggers might have different configurations depending on your need, you may as well write custom macro to access custom logger. You also have different macros for verbose logging that is explained in section below.
Here is very simple example of using these macros after you have initialized easylogging++.


LOG(INFO) << "This is info log";
CLOG(ERROR, "performance") << "This is info log using performance logger";






There is another way to use same macro i.e, LOG (and associated macros). This is that you define macro ELPP_DEFAULT_LOGGER and ELPP_CURR_FILE_PERFORMANCE_LOGGER_ID with logger ID that is already registered, and now when you use LOG macro, it automatically will use specified logger instead of default logger. Please note that this should be defined in source file instead of header file. This is so that when we include header we dont accidently use invalid logger.


A quick example is here


#ifndef ELPP_DEFAULT_LOGGER
#   define ELPP_DEFAULT_LOGGER "update_manager"
#endif
#ifndef ELPP_CURR_FILE_PERFORMANCE_LOGGER_ID
#   define ELPP_CURR_FILE_PERFORMANCE_LOGGER_ID ELPP_DEFAULT_LOGGER
#endif
#include "easylogging++.h"
UpdateManager::UpdateManager {
    _TRACE; // Logs using LOG(TRACE) provided logger is already registered - i.e, update_manager
    LOG(INFO) << "This will log using update_manager logger as well";
}






#include "easylogging++.h"
UpdateManager::UpdateManager {
    _TRACE; // Logs using LOG(TRACE) using default logger because no `ELPP_DEFAULT_LOGGER` is defined unless you have it in makefile
}







You can also write logs by using Logger class directly. This feature is available on compilers that support variadic templates. You can explore more by looking at samples/STL/logger-log-functions.cpp.



![top] Goto Top





Conditional Logging


Easylogging++ provides certain aspects of logging, one these aspects is conditional logging, i.e, log will be written only if certain condition fulfils. This comes very handy in some situations.
Helper macros end with _IF;



		LOG_IF(condition, LEVEL)


		CLOG_IF(condition, LEVEL, logger ID)






Some examples:


LOG_IF(condition, INFO) << "Logged if condition is true";

LOG_IF(false, WARNING) << "Never logged";
CLOG_IF(true, INFO, "performance") << "Always logged (performance logger)"






Same macros are available for verbose logging with V in the beginning, i.e, VLOG_IF and CVLOG_IF. see verbose logging section below for further information. You may have as complicated conditions as you want depending on your need.


![top] Goto Top







Occasional Logging


Occasional logging is another useful aspect of logging with Easylogging++. This means a log will be written if it’s hit certain times or part of certain times, e.g, every 10th hit or 100th hit or 2nd hit.
Helper macros end with _EVERY_N;



		LOG_EVERY_N(n, LEVEL)


		CLOG_EVERY_N(n, LEVEL, logger ID)






Other Hit Counts Based Logging


There are some other ways of logging as well based on hit counts. These useful macros are



		LOG_AFTER_N(n, LEVEL); Only logs when we have reached hit counts of n


		LOG_N_TIMES(n, LEVEL); Logs n times








Some examples:


for (int i = 1; i <= 10; ++i) {
   LOG_EVERY_N(2, INFO) << "Logged every second iter";
}
// 5 logs written; 2, 4, 6, 7, 10

for (int i = 1; i <= 10; ++i) {
   LOG_AFTER_N(2, INFO) << "Log after 2 hits; " << i;
}
// 8 logs written; 3, 4, 5, 6, 7, 8, 9, 10

for (int i = 1; i <= 100; ++i) {
   LOG_N_TIMES(3, INFO) << "Log only 3 times; " << i;
}
// 3 logs writter; 1, 2, 3







Same versions of macros are available for DEBUG only mode, these macros start with D (for debug) followed by the same name. e.g, DLOG to log only in debug mode (i.e, when _DEBUG is defined or NDEBUG is undefined)



![top] Goto Top







printf Like Logging


For compilers that support C++11’s variadic templates, ability to log like “printf” is available. This is done by using Logger class. This feature is thread and type safe (as we do not use any macros like LOG(INFO) etc)


This is done in two steps:



		Pulling registered logger using el::Loggers::getLogger(<logger_id>);


		Using one of logging functions





The only difference from printf is that logging using these functions require %v for each arg; instead of custom format specifiers. You can escape this by %%v


Following are various function signatures:



		info(const char*, const T&, const Args&...)


		warn(const char*, const T&, const Args&...)


		error(const char*, const T&, const Args&...)


		debug(const char*, const T&, const Args&...)


		fatal(const char*, const T&, const Args&...)


		trace(const char*, const T&, const Args&...)


		verbose(int vlevel, const char*, const T&, const Args&...)






Simple example:


// Use default logger
el::Logger* defaultLogger = el::Loggers::getLogger("default");

// STL logging (`ELPP_STL_LOGGING` should be defined)
std::vector<int> i;
i.push_back(1);
defaultLogger->warn("My first ultimate log message %v %v %v", 123, 222, i);

// Escaping
defaultLogger->info("My first ultimate log message %% %%v %v %v", 123, 222);






![top] Goto Top







Verbose Logging



Basic


Verbose logging is useful in every software to record more information than usual. Very useful for troubleshooting. Following are verbose logging specific macros;



		VLOG(verbose-level)


		CVLOG(verbose-level, logger ID)





![top] Goto Top





Conditional and Occasional Logging


Verbose logging also has conditional and occasional logging aspects i.e,



		VLOG_IF(condition, verbose-level)


		CVLOG_IF(condition, verbose-level, loggerID)


		VLOG_EVERY_N(n, verbose-level)


		CVLOG_EVERY_N(n, verbose-level, loggerID)


		VLOG_AFTER_N(n, verbose-level)


		CVLOG_AFTER_N(n, verbose-level, loggerID)


		VLOG_N_TIMES(n, verbose-level)


		CVLOG_N_TIMES(n, verbose-level, loggerID)





![top] Goto Top





Verbose-Level


Verbose level is level of verbosity that can have range of 1-9. Verbose level will not be active unless you either set application arguments for it. Please read through Application Arguments section to understand more about verbose logging.


In order to change verbose level on the fly, please use Loggers::setVerboseLevel(base::type::VerboseLevel) aka Loggers::setVerboseLevel(int) function. (You can check current verbose level by Loggers::verboseLevel()


![top] Goto Top





Check If Verbose Logging Is On


You can use a macro VLOG_IS_ON(verbose-level) to check to see if certain logging is on for source file for specified verbose level. This returns boolean that you can embed into if condition.


if (VLOG_IS_ON(2)) {
   // Verbosity level 2 is on for this file
}






![top] Goto Top





VModule


VModule is functionality for verbose logging (as mentioned in above table) where you can specify verbosity by modules/source file. Following are some examples with explanation; Any of vmodule below starts with -vmodule= and LoggingFlag::DisableVModulesExtensions flag not set. Vmodule can completely be disabled by adding flag LoggingFlag::DisableVModules


Example with LoggingFlag::AllowVerboseIfModuleNotSpecified flag;


main=3,parser*=4:



		A bad example but good enough for explanation;


		Verbosity for any following file will be allowed;
main{.h, .c, .cpp, .cc, .cxx, -inl.h, .hxx, .hpp}
parser{.h, .c, .cpp, .cc, .cxx, -inl.h, .hxx, .hpp}


		No other file will be logged for verbose level





Example with no LoggingFlag::AllowVerboseIfModuleNotSpecified flag;


main=3,parser*=4:
Same explanation but any other file that does not fall under specified modules will have verbose logging enabled.


In order to change vmodules on the fly (instead of via command line args) - use Loggers::setVModules(const char*) where const char* represents the modules e.g, main=3,parser*=4 (as per above example)


![top] Goto Top







STL Logging


As mentioned earlier, with easylogging++, you can log your STL templates including most containers. In order to do so you will need to define ELPP_STL_LOGGING macro. This enables including all the necessary headers and defines all necessary functions.
For performance, containers are limited to log maximum of 100 entries. This behaviour can be changed by changed header file (base::consts::kMaxLogPerContainer) but not recommended as in order to log, writer has to go through each entry causing potential delays. But if you are not really concerned with performance, you may change this value.


![top] Goto Top



Supported Templates


Following templates are supported as part of STL Logging; note: basic and primitive types e.g, std::string or long are not listed as they is supported anyway, following list only contains non-basic types e.g, containers or bitset etc.


|     *       |          *              |       *          |       *          |
|————-|————————-|——————|——————|
| std::vector |  std::list              |  std::deque      |    std::queue    |
| std::stack  |  std::priority_queue    |  std::set        |    std::multiset |
| std::pair   |  std::bitset            |  std::map        |    std::multimap |


Some C++11 specific templates are supported by further explicit macro definitions; note these also need ELPP_STL_LOGGING


|   Template              |     Macro Needed            |
|————————-|—————————–|
| std::array              | ELPP_LOG_STD_ARRAY       |
| std::unordered_map      | ELPP_LOG_UNORDERED_MAP   |
| std::unordered_multimap | ELPP_LOG_UNORDERED_MAP   |
| std::unordered_set      | ELPP_LOG_UNORDERED_SET   |
| std::unordered_multiset | ELPP_LOG_UNORDERED_SET   |


Standard manipulators are also supported, in addition std::stringstream is also supported.


![top] Goto Top







Registering New Loggers


Loggers are unique in logger repository by ID. You can register new logger the same way as you would get logger. Using getLogger(.., ..) from el::Loggers helper class. This function takes two params, first being ID and second being boolean (optional) to whether or not to register new logger if does not already exist and returns pointer to existing (or newly created) el::Logger class. This second param is optional and defaults to true. If you set it to false and logger does not exist already, it will return nullptr.


By default, Easylogging++ registers three loggers (+ an internal logger);



		Default logger (ID: default)


		Performance logger (ID: performance)


		Syslog logger (if ELPP_SYSLOG macro is defined) (ID: syslog)





If you wish to register a new logger, say e.g, with ID business


el::Logger* businessLogger = el::Loggers::getLogger("business");






This will register a new logger if it does not already exist otherwise it will get an existing one. But if you have passed in false to the second param and logger does not already exist, businessLogger will be nullptr.


When you register a new logger, default configurations are used (see Default Configurations section above). Also worth noticing, logger IDs are case sensitive.


![top] Goto Top





Unregister Loggers


You may unregister loggers; any logger except for default. You should be really careful with this function, only unregister loggers that you have created yourself otherwise you may end up in unexpected errors. For example, you dont want to unregister logger that is used or initialized by a third-party library and it may be using it.


To unregister logger, use el::Loggers::unregisterLogger("logger-id")


![top] Goto Top





Populating Existing Logger IDs


Although this is a rare situation but if you wish to get list of all the logger IDs currently in repository, you may use el::Loggers::populateAllLoggerIds(std::vector<std::string>&) function to do that. The list passed in is cleared and filled up with all existing logger IDs.


![top] Goto Top





Sharing Logging Repository


For advance logging, you can share your logging repositories to shared or static libraries, or even from library to application. This is rare case but a very good example is as follows;


Let’s say we have an application that uses easylogging++ and has it’s own configuration, now you are importing library that uses easylogging++ and wants to access logging repository of main application. You can do this using two ways;



		Instead of using INITIALIZE_EASYLOGGINGPP you use SHARE_EASYLOGGINGPP(access-function-to-repository)


		Instead of using INITIALIZE_EASYLOGGINGPP you use INITIALIZE_NULL_EASYLOGGINGPP and then el::Helpers::setStorage(el::base::type::StoragePointer)





Refer this [https://github.com/easylogging/easyloggingpp/blob/master/samples/STL/shared-storage] for details


After you share repository, you can reconfigure the only repository (i.e, the one that is used by application and library both), and use both to write logs. A very good example is in samples/VC++/DLLSample


![top] Goto Top







Extra Features


Easylogging++ is feature-rich logging library. Apart from features already mentioned above, here are some extra features. If code snippets don’t make sense and further sample is needed, there are many samples available at github repository (samples). Feel free to browse around.



Performance Tracking


One of the most notable features of Easylogging++ is its ability to track performance of your function or block of function.
Please note, this is not backward compatible as previously we had macros that user must had defined in order to track performance and I am sure many users had avoided in doing so. (Read v8.91 ReadMe for older way of doing it)
The new way of tracking performance is much easier and reliable. All you need to do is use one of two macros from where you want to start tracking.



		TIMED_FUNC(obj-name)


		TIMED_SCOPE(obj-name, block-name)


		TIMED_BLOCK(obj-name, block-name)





An example that just uses usleep


void performHeavyTask(int iter) {
   TIMED_FUNC(timerObj);
   // Some initializations
   // Some more heavy tasks
   usleep(5000);
   while (iter-- > 0) {
       TIMED_SCOPE(timerBlkObj, "heavy-iter");
       // Perform some heavy task in each iter
       usleep(10000);
   }
}






The result of above execution for iter = 10, is as following


06:22:31,368 INFO Executed [heavy-iter] in [10 ms]
06:22:31,379 INFO Executed [heavy-iter] in [10 ms]
06:22:31,389 INFO Executed [heavy-iter] in [10 ms]
06:22:31,399 INFO Executed [heavy-iter] in [10 ms]
06:22:31,409 INFO Executed [heavy-iter] in [10 ms]
06:22:31,419 INFO Executed [heavy-iter] in [10 ms]
06:22:31,429 INFO Executed [heavy-iter] in [10 ms]
06:22:31,440 INFO Executed [heavy-iter] in [10 ms]
06:22:31,450 INFO Executed [heavy-iter] in [10 ms]
06:22:31,460 INFO Executed [heavy-iter] in [10 ms]
06:22:31,460 INFO Executed [void performHeavyTask(int)] in [106 ms]






In the above example, we have used both the macros. In line-2 we have TIMED_FUNC with object name timerObj and line-7 we have TIMED_SCOPE with object name timerBlkObj and block name heavy-iter. Notice how block name is thrown out to the logs with every hit.  (Note: TIMED_FUNC is TIMED_BLOC with block name = function name)


You might wonder why do we need object name. Well easylogging++ performance tracking feature takes it further and provides ability to add, what’s called checkpoints.
Checkpoints have two macros:



		PERFORMANCE_CHECKPOINT(timed-block-obj-name)


		PERFORMANCE_CHECKPOINT_WITH_ID(timed-block-obj-name, id)





Take a look at following example


void performHeavyTask(int iter) {
   TIMED_FUNC(timerObj);
   // Some initializations
   // Some more heavy tasks
   usleep(5000);
   while (iter-- > 0) {
       TIMED_SCOPE(timerBlkObj, "heavy-iter");
       // Perform some heavy task in each iter
       // Notice following sleep varies with each iter
       usleep(iter * 1000);
       if (iter % 3) {
           PERFORMANCE_CHECKPOINT(timerBlkObj);
       }
   }
}






Notice macro on line-11 (also note comment on line-8. It’s checkpoint for heavy-iter block. Now notice following output


06:33:07,558 INFO Executed [heavy-iter] in [9 ms]
06:33:07,566 INFO Performance checkpoint for block [heavy-iter] : [8 ms]
06:33:07,566 INFO Executed [heavy-iter] in [8 ms]
06:33:07,573 INFO Performance checkpoint for block [heavy-iter] : [7 ms]
06:33:07,573 INFO Executed [heavy-iter] in [7 ms]
06:33:07,579 INFO Executed [heavy-iter] in [6 ms]
06:33:07,584 INFO Performance checkpoint for block [heavy-iter] : [5 ms]
06:33:07,584 INFO Executed [heavy-iter] in [5 ms]
06:33:07,589 INFO Performance checkpoint for block [heavy-iter] : [4 ms]
06:33:07,589 INFO Executed [heavy-iter] in [4 ms]
06:33:07,592 INFO Executed [heavy-iter] in [3 ms]
06:33:07,594 INFO Performance checkpoint for block [heavy-iter] : [2 ms]
06:33:07,594 INFO Executed [heavy-iter] in [2 ms]
06:33:07,595 INFO Performance checkpoint for block [heavy-iter] : [1 ms]
06:33:07,595 INFO Executed [heavy-iter] in [1 ms]
06:33:07,595 INFO Executed [heavy-iter] in [0 ms]
06:33:07,595 INFO Executed [void performHeavyTask(int)] in [51 ms]






You can also compare two checkpoints if they are in sub-blocks e.g, changing from PERFORMANCE_CHECKPOINT(timerBlkObj) to PERFORMANCE_CHECKPOINT(timerObj) will result in following output


06:40:35,522 INFO Performance checkpoint for block [void performHeavyTask(int)] : [51 ms ([1 ms] from last checkpoint)]






If you had used PERFORMANCE_CHECKPOINT_WITH_ID(timerObj, "mychkpnt"); instead, you will get


06:44:37,979 INFO Performance checkpoint [mychkpnt] for block [void performHeavyTask(int)] : [51 ms ([1 ms] from checkpoint 'mychkpnt')]






Following are some useful macros that you can define to change the behaviour


|   Macro Name                                        |                 Description                                                                                                    |
|—————————————————–|——————————————————————————————————————————–|
| ELPP_DISABLE_PERFORMANCE_TRACKING                | Disables performance tracking                                                                                                  |
| ELPP_PERFORMANCE_MICROSECONDS                    | Track up-to microseconds (this includes initializing of el::base::PerformanceTracker as well so might time not be 100% accurate)        |


Notes:



		Performance tracking uses performance logger (INFO level) by default unless el::base::PerformanceTracker is constructed manually (not using macro - not recommended). When configuring other loggers, make sure you configure this one as well.


		In above examples, timerObj and timerBlkObj is of type el::base::PerformanceTracker and checkpoint() can be accessed by timerObj.checkpoint() but not recommended as this will override behaviour of using macros, behaviour like location of checkpoint.


		In order to access el::base::PerformanceTracker while in TIMED_BLOCK, you can use timerObj.timer


		TIMED_BLOCK macro resolves to a single-looped for-loop, so be careful where you define TIMED_BLOCK, if for-loop is allowed in the line where you use it, you should have no errors.






You may be interested in python script to parse performance logs [https://github.com/easylogging/easyloggingpp/issues/206]



![top] Goto Top



Make Use of Performance Tracking Data


If you wish to capture performance tracking data right after it is finished, you can do so by extending el::PerformanceTrackingCallback.


In order to install this handler, use void Helpers::installPerformanceTrackingCallback<T>(const std::string& id). Where T is type of your handler. If you wish to uninstall a callback, you can do so by using Helpers::uninstallPerformanceTrackingCallback<T>(const std::string& id). See samples for details



DO NOT TRACK PERFORMANCE IN THIS HANDLER OR YOU WILL END UP IN INFINITE-LOOP



![top] Goto Top







Log File Rolling


Easylogging++ has ability to roll out (or throw away) log files if they reach certain limit. You can configure this by setting Max_Log_File_Size. See Configuration section above.


If you are having failure in log-rollout, you may have failed to add flag i.e, el::LoggingFlags::StrictLogFileSizeCheck.


This feature has it’s own section in this reference manual because you can do stuffs with the file being thrown away. This is useful, for example if you wish to back this file up etc.
This can be done by using el::Helpers::installPreRollOutCallback(const PreRollOutCallback& handler) where PreRollOutCallback is typedef of type std::function<void(const char*, std::size_t)>. Please note following if you are using this feature



You should not log anything in this function. This is because logger would already be locked in multi-threaded application and you can run into dead lock conditions. If you are sure that you are not going to log to same file and not using same logger, feel free to give it a try.



![top] Goto Top





Crash Handling


Easylogging++ provides ability to handle unexpected crashes for GCC compilers. This is active by default and can be disabled by defining macro ELPP_DISABLE_DEFAULT_CRASH_HANDLING. By doing so you are telling library not to handle any crashes. Later on if you wish to handle crash yourself, you can assign crash handler of type void func(int) where int is signal caught.


Following signals are handled;



		SIGABRT (If ELPP_HANDLE_SIGABRT macro is defined)


		SIGFPE


		SIGILL


		SIGSEGV


		SIGINT





Stacktraces are not printed by default, in order to do so define macro ELPP_STACKTRACE_ON_CRASH. Remember, stack trace is only available for GCC compiler.



Default handler and stack trace uses default logger.



Following are some useful macros that you can define to change the behaviour


|   Macro Name                                        |                 Description                                                                                                    |
|—————————————————–|——————————————————————————————————————————–|
| ELPP_DISABLE_DEFAULT_CRASH_HANDLING              | Disables default crash handling.                                                                                               |
| ELPP_HANDLE_SIGABRT                              | Enables handling SIGABRT. This is disabled by default to prevent annoying CTRL + C behaviour when you wish to abort.       |


![top] Goto Top



Installing Custom Crash Handlers


You can use your own crash handler by using el::Helpers::setCrashHandler(const el::base::debug::CrashHandler::Handler&);.



Make sure to abort application at the end of your crash handler using el::Helpers::crashAbort(int). If you fail to do so, you will get into endless loop of crashes.



Here is a good example of your own handler


#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP

void myCrashHandler(int sig) {
    LOG(ERROR) << "Woops! Crashed!";     
    // FOLLOWING LINE IS ABSOLUTELY NEEDED AT THE END IN ORDER TO ABORT APPLICATION
    el::Helpers::crashAbort(sig);
}
int main(void) {
    el::Helpers::setCrashHandler(myCrashHandler);

    LOG(INFO) << "My crash handler!";

    int* i;
    *i = 0; // Crash!

    return 0;
}







If you wish to log reason for crash you can do so by using el::Helpers::logCrashReason(int, bool, const el::Level&, const char*). Following are default parameters for this function:



>  bool stackTraceIfAvailable = false
>  const el::Level& level = el::Level::Fatal
>  const char* logger = "default"






![top] Goto Top







Stacktrace


Easylogging++ supports stack trace printing for GCC compilers. You can print stack trace at anytime by calling el::base::debug::StackTrace(), formatting will be done automatically. Note, if you are using non-GCC compiler, you will end-up getting empty output.


![top] Goto Top





Multi-threading


Easylogging++ is thread-safe. By default thread-safety is disabled. You can enable it by defining ELPP_THREAD_SAFE otherwise you will see unexpected results. This is intentional to make library efficient for single threaded application.


![top] Goto Top





CHECK Macros


Easylogging++ supports CHECK macros, with these macros you can quickly check whether certain condition fulfills or not. If not Easylogging++ writes FATAL log, causing application to stop (unless defined macro to prevent stopping application on fatal).


|                     CHECK Name              |                 Notes + Example                                                                                                 |
|———————————————|———————————————————————————————————————————|
| CHECK(condition)                          | Checks for condition e.g, CHECK(isLoggedIn()) << "Not logged in";                                                             |
| CHECK_EQ(a, b)                            | Equality check e.g, CHECK_EQ(getId(), getLoggedOnId()) << "Invalid user logged in";                                           |
| CHECK_NE(a, b)                            | Inequality check e.g, CHECK_NE(isUserBlocked(userId), false) << "User is blocked";                                            |
| CHECK_LT(a, b)                            | Less than e.g, CHECK_LT(1, 2) << "How 1 is not less than 2";                                                                  |
| CHECK_GT(a, b)                            | Greater than e.g, CHECK_GT(2, 1) << "How 2 is not greater than 1?";                                                           |
| CHECK_LE(a, b)                            | Less than or equal e.g, CHECK_LE(1, 1) << "1 is not equal or less than 1";                                                    |
| CHECK_GE(a, b)                            | Greater than or equal e.g, CHECK_GE(1, 1) << "1 is not equal or greater than 1";                                              |
| CHECK_NOTNULL(pointer)                    | Ensures pointer is not null - if OK returns pointer e.g, explicit MyClass(Obj* obj) : m_obj(CHECK_NOT_NULL(obj)) {}           |
| CHECK_STREQ(str1, str2)                   | C-string equality (case-sensitive) e.g, CHECK_STREQ(argv[1], "0") << "First arg cannot be 0";                                 |
| CHECK_STRNE(str1, str2)                   | C-string inequality (case-sensitive) e.g, CHECK_STRNE(username1, username2) << "Usernames cannot be same";                    |
| CHECK_STRCASEEQ(str1, str2)               | C-string inequality (case-insensitive) e.g, CHECK_CASESTREQ(argv[1], "Z") << "First arg cannot be 'z' or 'Z'";              |
| CHECK_STRCASENE(str1, str2)               | C-string inequality (case-insensitive) e.g, CHECK_STRCASENE(username1, username2) << "Same username not allowed";           |
| CHECK_BOUNDS(val, min, max)               | Checks that val falls under the min and max range e.g, CHECK_BOUNDS(i, 0, list.size() - 1) << "Index out of bounds";    |



Same versions of macros are available for DEBUG only mode, these macros start with D (for debug) followed by the same name. e.g, DCHECK to check only in debug mode (i.e, when _DEBUG is defined or NDEBUG is undefined)



![top] Goto Top





Logging perror()


Easylogging++ supports perror() styled logging using PLOG(LEVEL), PLOG_IF(Condition, LEVEL), and PCHECK() using default logger; and for custom logger use CPLOG(LEVEL, LoggerId), CPLOG_IF(Condition, LEVEL, LoggerId). This will append : log-error [errno] in the end of log line.


![top] Goto Top





Syslog


Easylogging++ supports syslog for platforms that have syslog.h header. In order to enable it, you need to define ELPP_SYSLOG. If your platform does not have syslog.h, make sure you do not define this macro or you will end up in errors. Once you are ready to use syslog, you can do so by using one of SYSLOG(LEVEL), SYSLOG_IF(Condition, LEVEL), SYSLOG_EVERY_N(n, LEVEL) and uses logger ID: syslog. If you want to use custom logger you can do so by using CSYSLOG(LEVEL, loggerId) or CSYSLOG_IF(Condition, LEVEL, loggerId) or CSYSLOG_EVERY_N(n, LEVEL, loggerId)


Syslog in Easylogging++ supports C++ styled streams logging, following example;


#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP
int main(void) {
    ELPP_INITIALIZE_SYSLOG("my_proc", LOG_PID | LOG_CONS | LOG_PERROR, LOG_USER) // This is optional, you may not add it if you dont want to specify options
    // Alternatively you may do
    // el::SysLogInitializer elSyslogInit("my_proc", LOG_PID | LOG_CONS | LOG_PERROR, LOG_USER);
    SYSLOG(INFO) << "This is syslog - read it from /var/log/syslog"
    return 0;
}






Syslog support for Easylogging++ only supports following levels; each level is corresponded with syslog priority as following



		INFO (LOG_INFO)


		DEBUG (LOG_DEBUG)


		WARNING (LOG_WARNING)


		ERROR (LOG_ERR)


		FATAL (LOG_EMERG)





Following levels are not supported and correspond to LOG_NOTICE: TRACE, whereas VERBOSE level is completely not supported


![top] Goto Top





Qt Logging


Easylogging++ has complete logging support for Qt core library. define ELPP_QT_LOGGING macro. This will include all the headers supported Qt logging. Once you did that, you should be good to go.


Following Qt classes and containers are supported by Easylogging++ v9.0+


|     *         |          *                |       *            |         *          |         *          |         *          |
|—————|—————————|——————–|——————–|——————–|——————–|
| QString     |  QByteArray             |  QLatin          |    QList         |    QVector       |    QQueue        |
| QSet        |  QPair                  |  QMap            |    QMultiMap     |    QHash         |    QMultiHash    |
| QLinkedList |  QStack                 |  QChar           |    q[u]int[64]   |                    |                    |


Similar to STL logging, Qt containers are also limit to log 100 entries per log, you can change this behaviour by changing base::consts::kMaxLogPerContainer from header but this is not recommended as this was done for performance purposes.


Also note, if you are logging a container that contains custom class, make sure you have read Extending Library section below.


![top] Goto Top





Boost Logging


Easylogging++ supports some of boost templates. In order to enable boost logging, define macro ELPP_BOOST_LOGGING


Following table shows the templates supported.


|     *                               |          *                               |
|————————————-|——————————————|
| boost::container::vector          |  boost::container::stable_vector       |
| boost::container::map             |  boost::container::flat_map            |
| boost::container::set             |  boost::container::flat_set            |
| boost::container::deque           |  boost::container::list                |
| boost::container::string          |                                          |


![top] Goto Top





wxWidgets Logging


Easylogging++ supports some of wxWidgets templates. In order to enable wxWidgets logging, define macro ELPP_WXWIDGETS_LOGGING


Following table shows the templates supported.


|     *               |          *        |      *                    |      *                    |      *              |      *               |
|———————|——————-|—————————|—————————|———————|———————-|
| wxString          |  wxVector       |  wxList                 |  wxString               | wxHashSet         |  wxHashMap         |


wxWidgets has its own way of declaring and defining some templates e.g, wxList where  you use WX_DECLARE_LIST macro to declare a list.


In order to setup a container for logging that holds pointers to object, use ELPP_WX_PTR_ENABLED, otherwise if container holds actual object e.g, wxHashSet use ELPP_WX_ENABLED. For containers like wxHashMap because it contains value and pair, use ELPP_WX_HASH_MAP_ENABLED macro.


// wxList example
WX_DECLARE_LIST(int, MyList);
WX_DEFINE_LIST(MyList);
// Following line does the trick
ELPP_WX_PTR_ENABLED(MyList);

// wxHashSet example
WX_DECLARE_HASH_SET(int, wxIntegerHash, wxIntegerEqual, IntHashSet);
// Following line does the trick!
ELPP_WX_ENABLED(IntHashSet)

// wxHashMap example
WX_DECLARE_STRING_HASH_MAP(wxString, MyHashMap);
// Following line does the trick
ELPP_WX_HASH_MAP_ENABLED(MyHashMap)






You may also have a look at wxWidgets sample


![top] Goto Top





Extending Library



Logging Your Own Class


You can log your own classes by extending el::Loggable class and implementing pure-virtual function void log(std::ostream& os) const. Following example shows a good way to extend a class.


#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP
class Integer : public el::Loggable {
public:
    Integer(int i) : m_underlyingInt(i) {
    }
    Integer& operator=(const Integer& integer) {
        m_underlyingInt = integer.m_underlyingInt;
        return *this;
    }
    // Following line does the trick!
    // Note: el::base::type::ostream_t is either std::wostream or std::ostream depending on unicode enabled or not
    virtual void log(el::base::type::ostream_t& os) const {
        os << m_underlyingInt;
    }
private:
    int m_underlyingInt;
};

int main(void) {
    Integer count = 5;
    LOG(INFO) << count;
    return 0;
}






![top] Goto Top





Logging Third-party Class


Let’s say you have third-party class that you don’t have access to make changes to, and it’s not yet loggable. In order to make it loggable, you can use MAKE_LOGGABLE(ClassType, ClassInstance, OutputStreamInstance) to make it Easylogging++ friendly.


Following sample shows a good usage:


#include "easylogging++.h"

INITIALIZE_EASYLOGGINGPP

class Integer {
public:
    Integer(int i) : m_underlyingInt(i) {
    }
    Integer& operator=(const Integer& integer) {
        m_underlyingInt = integer.m_underlyingInt;
        return *this;
    }
    int getInt(void) const { return m_underlyingInt; }
private:
    int m_underlyingInt;
};

// Following line does the trick!
inline MAKE_LOGGABLE(Integer, integer, os) {
    os << integer.getInt();
    return os;
}
int main(void) {
    Integer count = 5;
    LOG(INFO) << count;
    return 0;
}






Another very nice example (to log std::chrono::system_clock::time_point)


inline MAKE_LOGGABLE(std::chrono::system_clock::time_point, when, os) {
    time_t t = std::chrono::system_clock::to_time_t(when);
    auto tm = std::localtime(&t);
    char buf[1024];
    strftime(buf,sizeof(buf), "%F %T (%Z)", tm);
    os << buf;
    return os;
}






This may not be practically best implementation but you get the point.



Just be careful with this as having a time-consuming overloading of log(el::base::type::ostream_t& os) and MAKE_LOGGABLE, they get called everytime class is being logged.



![top] Goto Top







Manually Flushing and Rolling Log Files


You can manually flush log files using el::Logger::flush() (to flush single logger with all referencing log files) or el::Loggers::flushAll() (to flush all log files for all levels).


If you have not set flag LoggingFlag::StrictLogFileSizeCheck for some reason, you can manually check for log files that need rolling; by using el::Helpers::validateFileRolling(el::Logger*, const el::Level&).


![top] Goto Top





Log Dispatch Callback


If you wish to capture log message right after it is dispatched, you can do so by having a class that extends el::LogDispatchCallback and implement the pure-virtual functions, then install it at anytime using el::Helpers::installLogDispatchCallback<T>(const std::string&). If you wish to uninstall a pre-installed handler with same ID, you can do so by using el::Helpers::uninstallLogDispatchCallback<T>(const std::string&)



DO NOT LOG ANYTHING IN THIS HANDLER OR YOU WILL END UP IN INFINITE-LOOP



![top] Goto Top





Asynchronous Logging


Asynchronous logging is in experimental stages and they are not widely promoted. You may enable and test this feature by defining macro ELPP_EXPERIMENTAL_ASYNC and if you find some issue with the feature please report in this issue [https://github.com/easylogging/easyloggingpp/issues/202]. Reporting issues always help for constant improvements.


Please note:



		Asynchronous will only work with few compilers (it purely uses std::thread)


		Compiler should support std::this_thread::sleep_for. This restriction may (or may not) be removed in future (stable) version of asynchronous logging.


		You should not rely on asynchronous logging in production, this is because feature is in experiemental stages.





![top] Goto Top







Contribution



Submitting Patches


You can submit patches to develop branch and we will try and merge them. Since it’s based on single header, it can be sometimes difficult to merge without having merge conflicts.


![top] Goto Top





Reporting a Bug


If you have found a bug and wish to report it, feel free to do so at github issue tracker [https://github.com/easylogging/easyloggingpp/issues?state=open]. I will try to look at it as soon as possible. Some information should be provided to make it easy to reproduce;



		Platform (OS, Compiler)


		Log file location


		Macros defined (on compilation) OR simple compilation


		Please assign issue label.





Try to provide as much information as possible. Any bug with no clear information will be ignored and closed.


![top] Goto Top





Donation


Easylogging++ is free to use. You can check the details on where do donations go by clicking link below.


![paypal] [http://muflihun.com/donation/]


![top] Goto Top







Compatibility


Easylogging++ requires a decent C++0x complient compiler. Some compilers known to work with v9.0+ are shown in table below, for older versions please refer to readme on corresponding release at github


| *****   |     Compiler/Platform     |      Notes                                                                                                                                               |
|———|—————————|———————————————————————————————————————————————————-|
|[image: gcc]   | GCC 4.7+                  | Stack trace logging. Very close to support GCC 4.6 if it had supported strong enum types casting to underlying type. It causes internal compiler error.  |
|[image: llvm]  | Clang++ 3.1+              | Stack trace logging only with gcc compliant.                                                                                                             |
|[image: intel] | Intel C++ 13.0+           | Workarounds to support: Use if instead of switch on strong enum type. No final keyword etc. Stack trace logging only with gcc compliant                |
|[image: vcpp]  | Visual C++ 11.0+          | Tested with VS2012, VS2013-Preview; Use of argument templates instead of variadic templates. CRT warnings control. No stack trace logging.               |
|[image: mingw] | MinGW                     | (gcc version 4.7+) Workarounds to support: Mutex wrapper, no stack trace logging. No thread ID on windows                                                |
|[image: tdm]   | TDM-GCC 4.7.1             | Tested with TDM-GCC 4.7.1 32 and 64 bit compilers                                                                                                        |
|[image: cygwin]| Cygwin                    | Tested with gcc version 4.8+                                                                                                                             |
|[image: devcpp]| Dev C++ 5.4+              | Tested with Dev-C++ 5.4.2 using TDM-GCC 4.7.1 32 & 64-bit compilers                                                                                      |


Operating systems that have been tested are shown in table below. Easylogging++ should work on other major operating systems that are not in the list.


| *****         | Operating System       |   Notes                                                                             |
|—————|————————|————————————————————————————-|
|[image: win8]        | Windows 8              | Tested on 64-bit, should also work on 32-bit                                        |
|[image: win7]        | Windows 7              | Tested on 64-bit, should also work on 32-bit                                        |
|[image: winxp]       | Windows XP             | Tested on 32-bit, should also work on 64-bit                                        |
|[image: mac]         | Mac OSX                | Clang++ 3.1, g++ (You need -std=c++11 -stdlib=libc++ to successfully compile)     |
|[image: sl]          | Scientific Linux 6.2   | Tested using Intel C++ 13.1.3 (gcc version 4.4.6 compatibility)                     |
|[image: mint]        | Linux Mint 14          | 64-bit, mainly developed on this machine using all compatible linux compilers       |
|[image: fedora]      | Fedora 19              | 64-bit, using g++ 4.8.1                                                             |
|[image: ubuntu]      | Ubuntu 13.04           | 64-bit, using g++ 4.7.3 (libstdc++6-4.7-dev)                                        |
|[image: freebsd]     | FreeBSD                | (from github user)                                                                  |
|[image: android]     | Android                | Tested with C4droid (g++) on Galaxy Tab 2                                           |
|[image: raspberrypi] | RaspberryPi 7.6        | Tested with 7.6.2-1.1 (gcc version 4.9.1 (Raspbian 4.9.1-1)) by contributor         |
|[image: solaris]     | Solaris i86            | Tested by contributor                                                               |


Easylogging++ has also been tested with following C++ libraries;


| *****       | Library                |    Notes                                                                            |
|————-|————————|————————————————————————————-|
|[image: qt]        | Qt                     | Tested with Qt 4.6.2 and Qt 5 (with C++0x and C++11)                                |
|[image: boost]     | Boost                  | Tested with boost 1.51                                                              |
|[image: wxwidgets] | wxWidgets              | Tested with wxWidgets 2.9.4                                                         |
|[image: gtkmm]     | gtkmm                  | Tested with gtkmm 2.4                                                               |


![top] Goto Top





Licence


The MIT License (MIT)

Copyright (c) 2015 muflihun.com

https://github.com/easylogging/easyloggingpp
http://easylogging.muflihun.com
http://muflihun.com

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.






![top] Goto Top





Disclaimer


Icons used in this manual (in compatibility section) are solely for information readability purposes. I do not own these icons. If anyone has issues with usage of these icon, please feel free to contact me via company’s email and I will look for an alternative. Company’s email address is required so that I can verify the ownership, any other email address for this purpose will be ignored.


“Pencil +” icon is Easylogging++ logo and should only be used where giving credit to Easylogging++ library.


![top] Goto Top






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

external/easyloggingpp/samples/STL/shared-static-libs/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
A Simple example of shared and static compilations


.
├── compile_shared.sh
├── compile_static.sh
├── lib
│   ├── include
│   │   ├── easylogging++.h
│   │   └── mylib.hpp
│   └── mylib.cpp
└── myapp.cpp

2 directories, 6 files










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

external/easyloggingpp/samples/Qt/basic/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
Easylogging++ Qt Samples


This sample contains:



		Qt containers


		QThread based multi-threading









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

external/easyloggingpp/samples/STL/shared-storage/README.html


    
      Navigation


      
        		
          index


        		dynet stable documentation »

 
      


    


    
      
          
            
  
A Simple example on sharing Easylogging++ storage


.
├── compile_shared.sh
├── lib
│   ├── include
│   │   ├── easylogging++.h
│   │   └── mylib.hpp
│   └── mylib.cpp
├── myapp.cpp
└── README.md

2 directories, 6 files







What is storage


A storage is internal concept. It is main entry class for picking data from e.g, loggers, configurations etc.





Why do I need to share storage


In a normal application, you should not need to share storage but there will be cases where you would need it, some reasons are as follow



		In mylib.cpp we have registered a logger mylib and in myapp.cpp, we are using this logger without having to register it again. Try and replace SHARE_EASYLOGGINGPP(MyLib::getEasyloggingStorage()) with INITIALIZE_EASYLOGGINGPP (this will initialize a new storage for your app) and run the sample, you would notice a log line saying Logger [mylib] is not registered yet!.


		Saves memory by not doubling up storage when you can share existing one.


		In extension based project, you would require to share, even sometimes initialize a null storage i.e, using INITIALIZE_NULL_EASYLOGGINGPP. (See Project Islam [https://github.com/mkhan3189/project-islam/blob/master/extensions/al-quran/al_quran.cc] for a sample (you also may be interested in this file [https://github.com/mkhan3189/project-islam/blob/master/core/extension/extension_base.h#L152].))











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

